Startup Success Rate Prediction

Startup Success Rate Prediction

Objective: -

A startup or start-up is a company or project begun by an entrepreneur to seek, develop, and validate a scalable economic model. While entrepreneurship refers to all new businesses, including self-employment and businesses that never intend to become registered, startups refer to new businesses that intend to grow large beyond the solo founder. Startups face high uncertainty and have high rates of failure, but a minority of them do go on to be successful and influential. Some startups become unicorns: privately held startup companies valued at over US$1 billion.

The objective is to predict whether a startup which is currently operating turns into a success or a failure. The success of a company is defined as the event that gives the company’s founders a large sum of money through the process of M&A (Merger and Acquisition) or an IPO (Initial Public Offering). A company would be considered as failed if it had to be shut down.

The goal of this challenge is to build a machine learning model that helps predict the startups success rate.

Step 1: Import all the required libraries

  • Pandas : In computer programming, pandas is a software library written for the Python programming language for data manipulation and analysis and storing in a proper way. In particular, it offers data structures and operations for manipulating numerical tables and time series

  • Sklearn : Scikit-learn (formerly scikits.learn) is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy. The library is built upon the SciPy (Scientific Python) that must be installed before you can use scikit-learn.

  • Pickle : Python pickle module is used for serializing and de-serializing a Python object structure. Pickling is a way to convert a python object (list, dict, etc.) into a character stream. The idea is that this character stream contains all the information necessary to reconstruct the object in another python script.

  • Seaborn : Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

  • Matplotlib : Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.

#Loading libraries   
import pandas as pd  
import seaborn as sns  
from sklearn.model_selection import train_test_split  
from sklearn import preprocessing  
import sklearn.linear_model   
import sklearn  
import pickle  
import numpy as np  
import matplotlib.pyplot as plt  
from sklearn.preprocessing import OneHotEncoder  
from matplotlib.pyplot import figure  
import matplotlib.pyplot as plt  
from sklearn.metrics import mean_absolute_percentage_error  
from sklearn.metrics import mean_squared_error  
from sklearn.metrics import r2_score  
from sklearn.preprocessing import scale   
from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, Lasso, LassoCV  
from sklearn.model_selection import KFold, cross_val_score, train_test_split  
from sklearn.metrics import mean_squared_error  
from sklearn.decomposition import PCA  
import warnings  

warnings.filterwarnings('ignore')

Step 2 : Read dataset and basic details of dataset

Goal:- In this step we are going to read the dataset, view the dataset and analysis the basic details like total number of rows and columns, what are the column data types and see to need to create new column or not.

In this stage we are going to read our problem dataset and have a look on it.

#loading the dataset  
try:  
    df = pd.read_csv('F:\ML models\Startup succcess rate prediction\Data\data.csv') #Path for the file  
    print('Data read done successfully...')  
except (FileNotFoundError, IOError):  
    print("Wrong file or file path")
Data read done successfully...
# To view the content inside the dataset we can use the head() method that returns a specified number of rows, string from the top.   
# The head() method returns the first 5 rows if a number is not specified.  
df.head()

png

Dataset: -

The dataset used in this model is available at Kaggle.

Attribute Information:

  1. status(acquired/closed) — categorical (the target variable, if a startup is ‘acquired’ by some other organization, means the startup succeed)

Other features:

  1. Unnamed: 0

  2. state_code

  3. latitude

  4. longitude

  5. zip_code

  6. id

  7. city

  8. Unnamed: 6

  9. name

  10. labels

  11. founded_at

  12. closed_at

  13. first_funding_at

  14. last_funding_at

  15. age_first_funding_year

  16. age_last_funding_year

  17. age_first_milestone_year

  18. age_last_milestone_year

  19. relationships

  20. funding_rounds

  21. funding_total_usd

  22. milestones

  23. state_code.1

  24. is_CA

  25. is_NY

  26. is_MA

  27. is_TX

  28. is_otherstate

  29. category_code

  30. is_software

  31. is_web

  32. is_mobile

  33. is_enterprise

  34. is_advertising

  35. is_gamesvideo

  36. is_ecommerce

  37. is_biotech

  38. is_consulting

  39. is_othercategory

  40. object_id

  41. has_VC

  42. has_angel

  43. has_roundA

  44. has_roundB

  45. has_roundC

  46. has_roundD

  47. avg_participants

  48. is_top500

Step3: Data Preprocessing

Why need of Data Preprocessing?

Preprocessing data is an important step for data analysis. The following are some benefits of preprocessing data:

  • It improves accuracy and reliability. Preprocessing data removes missing or inconsistent data values resulting from human or computer error, which can improve the accuracy and quality of a dataset, making it more reliable.

  • It makes data consistent. When collecting data, it’s possible to have data duplicates, and discarding them during preprocessing can ensure the data values for analysis are consistent, which helps produce accurate results.

  • It increases the data’s algorithm readability. Preprocessing enhances the data’s quality and makes it easier for machine learning algorithms to read, use, and interpret it.

Why we drop column?

By analysing the first five rows we found that there is a column named [‘Unnamed: 0’,’Unnamed: 6'], it has only NAN(Not A Number) values which isn’t good for our model, se we gonna drop it using the below method:

df = df.drop(['Unnamed: 0','Unnamed: 6'], axis =1)

Axis are defined for arrays with more than one dimension. A 2-dimensional array has two corresponding axes: the first running vertically downwards across rows (axis 0) and the second running horizontally across columns (axis 1).

(axis=1) defines that the column named (‘Unnamed: 0’,’Unnamed: 6') should be dropped from the dataset.

After we read the data, we can look at the data using:

# count the total number of rows and columns.  
print ('The train data has {0} rows and {1} columns'.format(df.shape[0],df.shape[1]))
The train data has 923 rows and 47 columns

By analysing the problem statement and the dataset, we get to know that the target variable is “status” column which is continuous and shows whether startup acquired or closed.

df['status'].value_counts()
acquired    597  
closed      326  
Name: status, dtype: int64
features = ['status']  

plt.subplots(figsize=(20, 10))  
for i, col in enumerate(features):  
    plt.subplot(1, 3, i + 1)  

    x = df[col].value_counts()  
    plt.pie(x.values,  
            labels=x.index,  
            autopct='%1.1f%%')  
    plt.title('Status',fontsize=20)  

plt.show()

png

The df.value_counts() method counts the number of types of values a particular column contains.

df.shape
(923, 47)

The df.shape method shows the shape of the dataset.

We can identify that out of the 923 startups, 597 are labeled as acquired and 326 as closed.

df.info()
<class 'pandas.core.frame.DataFrame'>  
RangeIndex: 923 entries, 0 to 922  
Data columns (total 47 columns):  
 #   Column                    Non-Null Count  Dtype    
---  ------                    --------------  -----    
 0   state_code                923 non-null    object   
 1   latitude                  923 non-null    float64  
 2   longitude                 923 non-null    float64  
 3   zip_code                  923 non-null    object   
 4   id                        923 non-null    object   
 5   city                      923 non-null    object   
 6   name                      923 non-null    object   
 7   labels                    923 non-null    int64    
 8   founded_at                923 non-null    object   
 9   closed_at                 335 non-null    object   
 10  first_funding_at          923 non-null    object   
 11  last_funding_at           923 non-null    object   
 12  age_first_funding_year    923 non-null    float64  
 13  age_last_funding_year     923 non-null    float64  
 14  age_first_milestone_year  771 non-null    float64  
 15  age_last_milestone_year   771 non-null    float64  
 16  relationships             923 non-null    int64    
 17  funding_rounds            923 non-null    int64    
 18  funding_total_usd         923 non-null    int64    
 19  milestones                923 non-null    int64    
 20  state_code.1              922 non-null    object   
 21  is_CA                     923 non-null    int64    
 22  is_NY                     923 non-null    int64    
 23  is_MA                     923 non-null    int64    
 24  is_TX                     923 non-null    int64    
 25  is_otherstate             923 non-null    int64    
 26  category_code             923 non-null    object   
 27  is_software               923 non-null    int64    
 28  is_web                    923 non-null    int64    
 29  is_mobile                 923 non-null    int64    
 30  is_enterprise             923 non-null    int64    
 31  is_advertising            923 non-null    int64    
 32  is_gamesvideo             923 non-null    int64    
 33  is_ecommerce              923 non-null    int64    
 34  is_biotech                923 non-null    int64    
 35  is_consulting             923 non-null    int64    
 36  is_othercategory          923 non-null    int64    
 37  object_id                 923 non-null    object   
 38  has_VC                    923 non-null    int64    
 39  has_angel                 923 non-null    int64    
 40  has_roundA                923 non-null    int64    
 41  has_roundB                923 non-null    int64    
 42  has_roundC                923 non-null    int64    
 43  has_roundD                923 non-null    int64    
 44  avg_participants          923 non-null    float64  
 45  is_top500                 923 non-null    int64    
 46  status                    923 non-null    object   
dtypes: float64(7), int64(27), object(13)  
memory usage: 339.0+ KB

The df.info() method prints information about a DataFrame including the index dtype and columns, non-null values and memory usage.

df.iloc[1]
state_code                          CA  
latitude                     37.238916  
longitude                  -121.973718  
zip_code                         95032  
id                             c:16283  
city                         Los Gatos  
name                         TriCipher  
labels                               1  
founded_at                    1/1/2000  
closed_at                          NaN  
first_funding_at             2/14/2005  
last_funding_at             12/28/2009  
age_first_funding_year           5.126  
age_last_funding_year           9.9973  
age_first_milestone_year        7.0055  
age_last_milestone_year         7.0055  
relationships                        9  
funding_rounds                       4  
funding_total_usd             40100000  
milestones                           1  
state_code.1                        CA  
is_CA                                1  
is_NY                                0  
is_MA                                0  
is_TX                                0  
is_otherstate                        0  
category_code               enterprise  
is_software                          0  
is_web                               0  
is_mobile                            0  
is_enterprise                        1  
is_advertising                       0  
is_gamesvideo                        0  
is_ecommerce                         0  
is_biotech                           0  
is_consulting                        0  
is_othercategory                     0  
object_id                      c:16283  
has_VC                               1  
has_angel                            0  
has_roundA                           0  
has_roundB                           1  
has_roundC                           1  
has_roundD                           1  
avg_participants                  4.75  
is_top500                            1  
status                        acquired  
Name: 1, dtype: object

df.iloc[ ] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. The iloc property gets, or sets, the value(s) of the specified indexes.

Data Type Check for every column

Why data type check is required?

Data type check helps us with understanding what type of variables our dataset contains. It helps us with identifying whether to keep that variable or not. If the dataset contains contiguous data, then only float and integer type variables will be beneficial and if we have to classify any value then categorical variables will be beneficial.

objects_cols = ['object']  
objects_lst = list(df.select_dtypes(include=objects_cols).columns)
print("Total number of categorical columns are ", len(objects_lst))  
print("There names are as follows: ", objects_lst)
Total number of categorical columns are  13  
There names are as follows:  ['state_code', 'zip_code', 'id', 'city', 'name', 'founded_at', 'closed_at', 'first_funding_at', 'last_funding_at', 'state_code.1', 'category_code', 'object_id', 'status']
int64_cols = ['int64']  
int64_lst = list(df.select_dtypes(include=int64_cols).columns)
print("Total number of numerical columns are ", len(int64_lst))  
print("There names are as follows: ", int64_lst)
Total number of numerical columns are  27  
There names are as follows:  ['labels', 'relationships', 'funding_rounds', 'funding_total_usd', 'milestones', 'is_CA', 'is_NY', 'is_MA', 'is_TX', 'is_otherstate', 'is_software', 'is_web', 'is_mobile', 'is_enterprise', 'is_advertising', 'is_gamesvideo', 'is_ecommerce', 'is_biotech', 'is_consulting', 'is_othercategory', 'has_VC', 'has_angel', 'has_roundA', 'has_roundB', 'has_roundC', 'has_roundD', 'is_top500']
float64_cols = ['float64']  
float64_lst = list(df.select_dtypes(include=float64_cols).columns)
print("Total number of numerical columns are ", len(float64_lst))  
print("There names are as follows: ", float64_lst)
Total number of numerical columns are  7  
There names are as follows:  ['latitude', 'longitude', 'age_first_funding_year', 'age_last_funding_year', 'age_first_milestone_year', 'age_last_milestone_year', 'avg_participants']

In the dataset , the column named as “id” and “object_id”, we will count the unique values of id column which is shown below and also the length of dataset.

len(df['id'].unique()), df.shape[0]
(922, 923)
len(df['object_id'].unique()), df.shape[0]
(922, 923)
  • The uniqueness of “id” and “object_id” columns and length of the dataset both are same that means there is no sense to keep id and “object_id” columns so we have to drop that columns:
df = df.drop(['id','object_id'],axis=1)

In the dataset , the column named as “is_consulting”, we will count the unique values of is_consulting column which is shown below and also the length of dataset.

len(df['is_consulting'].unique()), df.shape[0]
(2, 923)
  • The uniqueness of “is_consulting” column 2 so we have to drop that column:
df = df.drop(['is_consulting'],axis=1)
#count the total number of rows and columns.  
print ('The new dataset has {0} rows and {1} columns'.format(df.shape[0],df.shape[1]))
The new dataset has 923 rows and 44 columns

Step 2 Insights: -

  1. We have total 44 features where 26 of them are integer type, 11 are object type while other are float type.

  2. Drop “id”, “object_id”, “is_consulting”, “unnamed:0” and “unnamed:6” columns.

After this step we have to calculate various evaluation parameters which will help us in cleaning and analysing the data more accurately.

Step 3: Descriptive Analysis

Goal/Purpose: Finding the data distribution of the features. Visualization helps to understand data and also to explain the data to another person.

Things we are going to do in this step:

  1. Mean

  2. Median

  3. Mode

  4. Standard Deviation

  5. Variance

  6. Null Values

  7. NaN Values

  8. Min value

  9. Max value

  10. Count Value

  11. Quatilers

  12. Correlation

  13. Skewness

df.describe()

png

The df.describe() method returns description of the data in the DataFrame. If the DataFrame contains numerical data, the description contains these information for each column: count — The number of not-empty values. mean — The average (mean) value.

Measure the variability of data of the dataset

Variability describes how far apart data points lie from each other and from the center of a distribution.

1. Standard Deviation

Standard-Deviation-ADD-SOURCE-e838b9dcfb89406e836ccad58278f4cd.jpg

The standard deviation is the average amount of variability in your dataset.

It tells you, on average, how far each data point lies from the mean. The larger the standard deviation, the more variable the data set is and if zero variance then there is no variability in the dataset that means there no use of that dataset.

So, it helps in understanding the measurements when the data is distributed. The more the data is distributed, the greater will be the standard deviation of that data.Here, you as an individual can determine which company is beneficial in long term. But, if you didn’t know the SD you would have choosen a wrong compnay for you.

df.std()
latitude                    3.741497e+00  
longitude                   2.239417e+01  
labels                      4.782221e-01  
age_first_funding_year      2.510449e+00  
age_last_funding_year       2.967910e+00  
age_first_milestone_year    2.977057e+00  
age_last_milestone_year     3.212107e+00  
relationships               7.265776e+00  
funding_rounds              1.390922e+00  
funding_total_usd           1.896344e+08  
milestones                  1.322632e+00  
is_CA                       4.995068e-01  
is_NY                       3.190051e-01  
is_MA                       2.862282e-01  
is_TX                       2.085193e-01  
is_otherstate               4.151578e-01  
is_software                 3.720701e-01  
is_web                      3.630644e-01  
is_mobile                   2.799100e-01  
is_enterprise               2.700254e-01  
is_advertising              2.504558e-01  
is_gamesvideo               2.306983e-01  
is_ecommerce                1.624209e-01  
is_biotech                  1.884621e-01  
is_othercategory            4.678233e-01  
has_VC                      4.690424e-01  
has_angel                   4.358749e-01  
has_roundA                  5.002050e-01  
has_roundB                  4.885054e-01  
has_roundC                  4.229310e-01  
has_roundD                  2.997286e-01  
avg_participants            1.874601e+00  
is_top500                   3.930523e-01  
dtype: float64

We can also understand the standard deviation using the below function.

def std_cal(df,float64_lst):  

    cols = ['normal_value', 'zero_value']  
    zero_value = 0  
    normal_value = 0  

    for value in float64_lst:  

        rs = round(df[value].std(),6)  

        if rs > 0:  
            normal_value = normal_value + 1  

        elif rs == 0:  
            zero_value = zero_value + 1  

    std_total_df =  pd.DataFrame([[normal_value, zero_value]], columns=cols)   

    return std_total_df
int64_cols = ['int64']  
int64_lst = list(df.select_dtypes(include=int64_cols).columns)  
std_cal(df,int64_lst)

png

float64_cols = ['float64']  
float64_lst = list(df.select_dtypes(include=float64_cols).columns)  
std_cal(df,float64_lst)

png

zero_value -> is the zero variance and when then there is no variability in the dataset that means there no use of that dataset.

2. Variance

The variance is the average of squared deviations from the mean. A deviation from the mean is how far a score lies from the mean.

Variance is the square of the standard deviation. This means that the units of variance are much larger than those of a typical value of a data set.

0_5NGAJWo_3-DsLKoV.png

Variance-TAERM-ADD-Source-464952914f77460a8139dbf20e14f0c0.jpg

Why do we used Variance ?

By Squairng the number we get non-negative computation i.e. Disperson cannot be negative. The presence of variance is very important in your dataset because this will allow the model to learn about the different patterns hidden in the data

df.var()
latitude                    1.399880e+01  
longitude                   5.014987e+02  
labels                      2.286964e-01  
age_first_funding_year      6.302352e+00  
age_last_funding_year       8.808489e+00  
age_first_milestone_year    8.862869e+00  
age_last_milestone_year     1.031763e+01  
relationships               5.279150e+01  
funding_rounds              1.934663e+00  
funding_total_usd           3.596119e+16  
milestones                  1.749355e+00  
is_CA                       2.495071e-01  
is_NY                       1.017643e-01  
is_MA                       8.192657e-02  
is_TX                       4.348030e-02  
is_otherstate               1.723560e-01  
is_software                 1.384362e-01  
is_web                      1.318158e-01  
is_mobile                   7.834962e-02  
is_enterprise               7.291370e-02  
is_advertising              6.272811e-02  
is_gamesvideo               5.322172e-02  
is_ecommerce                2.638054e-02  
is_biotech                  3.551796e-02  
is_othercategory            2.188586e-01  
has_VC                      2.200008e-01  
has_angel                   1.899869e-01  
has_roundA                  2.502051e-01  
has_roundB                  2.386376e-01  
has_roundC                  1.788707e-01  
has_roundD                  8.983720e-02  
avg_participants            3.514129e+00  
is_top500                   1.544901e-01  
dtype: float64

We can also understand the Variance using the below function.

zero_cols = []  

def var_cal(df,float64_lst):  

    cols = ['normal_value', 'zero_value']  
    zero_value = 0  
    normal_value = 0  

    for value in float64_lst:  

        rs = round(df[value].var(),6)  

        if rs > 0:  
            normal_value = normal_value + 1  

        elif rs == 0:  
            zero_value = zero_value + 1  
            zero_cols.append(value)  

    var_total_df =  pd.DataFrame([[normal_value, zero_value]], columns=cols)   

    return var_total_df
var_cal(df, int64_lst)

png

var_cal(df, float64_lst)

png

zero_value -> Zero variance means that there is no difference in the data values, which means that they are all the same.

Measure central tendency

A measure of central tendency is a single value that attempts to describe a set of data by identifying the central position within that set of data. As such, measures of central tendency are sometimes called measures of central location. They are also classed as summary statistics.

Mean — The average value. Median — The mid point value. Mode — The most common value.

1. Mean

1_tjAEMZx_0uIYGUhxEnPXPw.png

The mean is the arithmetic average, and it is probably the measure of central tendency that you are most familiar.

Why do we calculate mean?

The mean is used to summarize a data set. It is a measure of the center of a data set.

df.mean()
latitude                    3.851744e+01  
longitude                  -1.035392e+02  
labels                      6.468039e-01  
age_first_funding_year      2.235630e+00  
age_last_funding_year       3.931456e+00  
age_first_milestone_year    3.055353e+00  
age_last_milestone_year     4.754423e+00  
relationships               7.710726e+00  
funding_rounds              2.310943e+00  
funding_total_usd           2.541975e+07  
milestones                  1.841820e+00  
is_CA                       5.276273e-01  
is_NY                       1.148429e-01  
is_MA                       8.992416e-02  
is_TX                       4.550379e-02  
is_otherstate               2.210184e-01  
is_software                 1.657638e-01  
is_web                      1.560130e-01  
is_mobile                   8.559047e-02  
is_enterprise               7.908992e-02  
is_advertising              6.717226e-02  
is_gamesvideo               5.633803e-02  
is_ecommerce                2.708559e-02  
is_biotech                  3.683640e-02  
is_othercategory            3.228602e-01  
has_VC                      3.261105e-01  
has_angel                   2.546046e-01  
has_roundA                  5.081257e-01  
has_roundB                  3.921993e-01  
has_roundC                  2.329361e-01  
has_roundD                  9.967497e-02  
avg_participants            2.838586e+00  
is_top500                   8.093174e-01  
dtype: float64

We can also understand the mean using the below function.

def mean_cal(df,int64_lst):  

    cols = ['normal_value', 'zero_value']  
    zero_value = 0  
    normal_value = 0  

    for value in int64_lst:  

        rs = round(df[value].mean(),6)  

        if rs > 0:  
            normal_value = normal_value + 1  

        elif rs == 0:  
            zero_value = zero_value + 1  

    mean_total_df =  pd.DataFrame([[normal_value, zero_value]], columns=cols)   

    return mean_total_df
mean_cal(df, int64_lst)

png

mean_cal(df, float64_lst)

png

zero_value -> that the mean of a paticular column is zero, which isn’t usefull in anyway and need to be drop.

2.Median

Alg1_14_02_0011-diagram_thumb-lg.png

The median is the middle value. It is the value that splits the dataset in half.The median of a dataset is the value that, assuming the dataset is ordered from smallest to largest, falls in the middle. If there are an even number of values in a dataset, the middle two values are the median.

Why do we calculate median ?

By comparing the median to the mean, you can get an idea of the distribution of a dataset. When the mean and the median are the same, the dataset is more or less evenly distributed from the lowest to highest values.

df.median()
latitude                    3.777928e+01  
longitude                  -1.183740e+02  
labels                      1.000000e+00  
age_first_funding_year      1.446600e+00  
age_last_funding_year       3.528800e+00  
age_first_milestone_year    2.520500e+00  
age_last_milestone_year     4.476700e+00  
relationships               5.000000e+00  
funding_rounds              2.000000e+00  
funding_total_usd           1.000000e+07  
milestones                  2.000000e+00  
is_CA                       1.000000e+00  
is_NY                       0.000000e+00  
is_MA                       0.000000e+00  
is_TX                       0.000000e+00  
is_otherstate               0.000000e+00  
is_software                 0.000000e+00  
is_web                      0.000000e+00  
is_mobile                   0.000000e+00  
is_enterprise               0.000000e+00  
is_advertising              0.000000e+00  
is_gamesvideo               0.000000e+00  
is_ecommerce                0.000000e+00  
is_biotech                  0.000000e+00  
is_othercategory            0.000000e+00  
has_VC                      0.000000e+00  
has_angel                   0.000000e+00  
has_roundA                  1.000000e+00  
has_roundB                  0.000000e+00  
has_roundC                  0.000000e+00  
has_roundD                  0.000000e+00  
avg_participants            2.500000e+00  
is_top500                   1.000000e+00  
dtype: float64

We can also understand the median using the below function.

def median_cal(df,int64_lst):  

    cols = ['normal_value', 'zero_value']  
    zero_value = 0  
    normal_value = 0  

    for value in int64_lst:  

        rs = round(df[value].mean(),6)  

        if rs > 0:  
            normal_value = normal_value + 1  

        elif rs == 0:  
            zero_value = zero_value + 1  

    median_total_df =  pd.DataFrame([[normal_value, zero_value]], columns=cols)   

    return median_total_df
median_cal(df, int64_lst)

png

median_cal(df, float64_lst)

png

zero_value -> that the median of a paticular column is zero which isn’t usefull in anyway and need to be drop.

3. Mode

The mode is the value that occurs the most frequently in your data set. On a bar chart, the mode is the highest bar. If the data have multiple values that are tied for occurring the most frequently, you have a multimodal distribution. If no value repeats, the data do not have a mode.

Why do we calculate mode ?

The mode can be used to summarize categorical variables, while the mean and median can be calculated only for numeric variables. This is the main advantage of the mode as a measure of central tendency. It’s also useful for discrete variables and for continuous variables when they are expressed as intervals.

df.mode()

png

Here the mode of the status shows that most of the startups will acquired.

def mode_cal(df,int64_lst):  

    cols = ['normal_value', 'zero_value', 'string_value']  
    zero_value = 0  
    normal_value = 0  
    string_value = 0  

    for value in int64_lst:  

        rs = df[value].mode()[0]  

        if isinstance(rs, str):  
            string_value = string_value + 1  
        else:  

            if rs > 0:  
                normal_value = normal_value + 1  

            elif rs == 0:  
                zero_value = zero_value + 1  

    mode_total_df =  pd.DataFrame([[normal_value, zero_value, string_value]], columns=cols)   

    return mode_total_df
mode_cal(df, list(df.columns))

png

zero_value -> that the mode of a paticular column is zero which isn’t usefull in anyway and need to be drop.

Null and Nan values

  1. Null Values

missing-values.png

A null value in a relational database is used when the value in a column is unknown or missing. A null is neither an empty string (for character or datetime data types) nor a zero value (for numeric data types).

df.isnull().sum()
state_code                    0  
latitude                      0  
longitude                     0  
zip_code                      0  
city                          0  
name                          0  
labels                        0  
founded_at                    0  
closed_at                   588  
first_funding_at              0  
last_funding_at               0  
age_first_funding_year        0  
age_last_funding_year         0  
age_first_milestone_year    152  
age_last_milestone_year     152  
relationships                 0  
funding_rounds                0  
funding_total_usd             0  
milestones                    0  
state_code.1                  1  
is_CA                         0  
is_NY                         0  
is_MA                         0  
is_TX                         0  
is_otherstate                 0  
category_code                 0  
is_software                   0  
is_web                        0  
is_mobile                     0  
is_enterprise                 0  
is_advertising                0  
is_gamesvideo                 0  
is_ecommerce                  0  
is_biotech                    0  
is_othercategory              0  
has_VC                        0  
has_angel                     0  
has_roundA                    0  
has_roundB                    0  
has_roundC                    0  
has_roundD                    0  
avg_participants              0  
is_top500                     0  
status                        0  
dtype: int64

As we notice that there are some null values in our dataset.

  1. Nan Values

images.png

NaN, standing for Not a Number, is a member of a numeric data type that can be interpreted as a value that is undefined or unrepresentable, especially in floating-point arithmetic.

df.isna().sum()
state_code                    0  
latitude                      0  
longitude                     0  
zip_code                      0  
city                          0  
name                          0  
labels                        0  
founded_at                    0  
closed_at                   588  
first_funding_at              0  
last_funding_at               0  
age_first_funding_year        0  
age_last_funding_year         0  
age_first_milestone_year    152  
age_last_milestone_year     152  
relationships                 0  
funding_rounds                0  
funding_total_usd             0  
milestones                    0  
state_code.1                  1  
is_CA                         0  
is_NY                         0  
is_MA                         0  
is_TX                         0  
is_otherstate                 0  
category_code                 0  
is_software                   0  
is_web                        0  
is_mobile                     0  
is_enterprise                 0  
is_advertising                0  
is_gamesvideo                 0  
is_ecommerce                  0  
is_biotech                    0  
is_othercategory              0  
has_VC                        0  
has_angel                     0  
has_roundA                    0  
has_roundB                    0  
has_roundC                    0  
has_roundD                    0  
avg_participants              0  
is_top500                     0  
status                        0  
dtype: int64

As we notice that there are some nan values in our dataset.

Another way to remove null and nan values is to use the method “df.dropna(inplace=True)”.

df.dropna(inplace=True)

Count of unique occurences of every value in all categorical value

objects_cols = ['object']  
objects_lst = list(df.select_dtypes(include=objects_cols).columns)  
for value in objects_lst:  

    print(f"{value:{10}} {df[value].value_counts()}")
state_code CA    112  
NY     22  
MA     18  
WA     14  
TX     12  
IL      8  
VA      5  
OH      5  
PA      4  
NC      4  
MI      3  
NJ      3  
CT      3  
CO      3  
MN      1  
AR      1  
ID      1  
RI      1  
UT      1  
IN      1  
TN      1  
NH      1  
GA      1  
NV      1  
MD      1  
FL      1  
WI      1  
Name: state_code, dtype: int64  
zip_code   94105             6  
94025             5  
94107             5  
94043             5  
98104             5  
                 ..  
94066             1  
19004             1  
94035             1  
Maryland 21045    1  
94089             1  
Name: zip_code, Length: 154, dtype: int64  
city       San Francisco    28  
New York         18  
Los Angeles      11  
Austin           10  
Seattle           9  
                 ..  
Columbia          1  
Weston            1  
Durham            1  
Bingham Farms     1  
Middleton         1  
Name: city, Length: 99, dtype: int64  
name       Inhale Digital           1  
Shocking Technologies    1  
Weatherista              1  
Exit41                   1  
HighlightCam             1  
                        ..  
Planet Metrics           1  
kwiry                    1  
Amadesa                  1  
Aptera                   1  
Paracor Medical          1  
Name: name, Length: 229, dtype: int64  
founded_at 1/1/2006      17  
1/1/2008      15  
1/1/2007      13  
1/1/2003      12  
1/1/2004      11  
              ..  
9/1/2003       1  
10/22/2004     1  
7/7/2007       1  
4/1/2009       1  
12/3/2004      1  
Name: founded_at, Length: 87, dtype: int64  
closed_at  6/1/2013      19  
1/1/2012      18  
5/1/2013      11  
7/1/2013      11  
1/1/2013       6  
              ..  
2/3/2009       1  
10/15/2009     1  
2/12/2009      1  
9/28/2011      1  
6/17/2012      1  
Name: closed_at, Length: 135, dtype: int64  
first_funding_at 1/1/2008      5  
1/1/2009      5  
1/1/2007      5  
6/1/2007      4  
5/1/2010      3  
             ..  
12/1/2005     1  
10/2/2010     1  
11/12/2008    1  
3/20/2008     1  
6/29/2007     1  
Name: first_funding_at, Length: 191, dtype: int64  
last_funding_at 4/1/2012      4  
5/1/2012      3  
12/1/2007     3  
1/1/2011      3  
1/1/2012      3  
             ..  
10/2/2010     1  
3/13/2009     1  
11/12/2008    1  
3/20/2008     1  
6/29/2007     1  
Name: last_funding_at, Length: 200, dtype: int64  
state_code.1 CA    112  
NY     22  
MA     18  
WA     14  
TX     12  
IL      8  
VA      5  
OH      5  
PA      4  
NC      4  
MI      3  
NJ      3  
CT      3  
CO      3  
MN      1  
AR      1  
ID      1  
RI      1  
UT      1  
IN      1  
TN      1  
NH      1  
GA      1  
NV      1  
MD      1  
FL      1  
WI      1  
Name: state_code.1, dtype: int64  
category_code web                 42  
software            31  
mobile              24  
games_video         19  
enterprise          16  
advertising         14  
ecommerce           12  
network_hosting      8  
hardware             7  
cleantech            7  
public_relations     6  
social               6  
biotech              6  
other                5  
search               4  
analytics            3  
security             3  
messaging            3  
fashion              3  
finance              2  
photo_video          2  
travel               1  
automotive           1  
semiconductor        1  
real_estate          1  
news                 1  
education            1  
Name: category_code, dtype: int64  
status     closed      220  
acquired      9  
Name: status, dtype: int64
  • Categorical data are variables that contain label values rather than numeric values.The number of possible values is often limited to a fixed set.

  • Use Label Encoder to label the categorical data. Label Encoder is the part of SciKit Learn library in Python and used to convert categorical data, or text data, into numbers, which our predictive models can better understand.

Label Encoding refers to converting the labels into a numeric form so as to convert them into the machine-readable form. Machine learning algorithms can then decide in a better way how those labels must be operated. It is an important pre-processing step for the structured dataset in supervised learning.

#Before Encoding  
for value in objects_lst:  
    print(value)  
    print()  
    print(df[value])  
    print("------------------------------------------------")  
    print()
state_code  

4      CA  
5      CA  
11     CA  
16     CA  
19     CA  
       ..  
911    CA  
913    TX  
915    WI  
919    MA  
920    CA  
Name: state_code, Length: 229, dtype: object  
------------------------------------------------  

zip_code  

4      94105  
5      94043  
11     94025  
16     94022  
19     94301  
       ...    
911    94080  
913    77027  
915    53562  
919     1803  
920    94089  
Name: zip_code, Length: 229, dtype: object  
------------------------------------------------  

city  

4            San Francisco  
5            Mountain View  
11              Menlo Park  
16               Los Altos  
19               Palo Alto  
              ...           
911    South San Francisco  
913                Houston  
915              Middleton  
919             Burlington  
920              Sunnyvale  
Name: city, Length: 229, dtype: object  
------------------------------------------------  

name  

4          Inhale Digital  
5        Matisse Networks  
11               Center'd  
16                QSecure  
19           Bling Nation  
              ...          
911    Limerick BioPharma  
913                Rudder  
915                  Sway  
919    Reef Point Systems  
920       Paracor Medical  
Name: name, Length: 229, dtype: object  
------------------------------------------------  

founded_at  

4       8/1/2010  
5       1/1/2002  
11      1/1/2006  
16      1/1/2003  
19      1/1/2007  
         ...      
911     1/1/2004  
913    10/1/2006  
915    12/3/2004  
919     1/1/1998  
920     1/1/1999  
Name: founded_at, Length: 229, dtype: object  
------------------------------------------------  

closed_at  

4      10/1/2012  
5      2/15/2009  
11     12/2/2011  
16     9/22/2012  
19     9/10/2011  
         ...      
911     6/1/2013  
913    11/5/2010  
915    12/2/2012  
919    6/25/2008  
920    6/17/2012  
Name: closed_at, Length: 229, dtype: object  
------------------------------------------------  

first_funding_at  

4       8/1/2010  
5      7/18/2006  
11      2/1/2007  
16      8/2/2005  
19      7/2/2009  
         ...      
911    6/11/2008  
913    1/15/2008  
915    1/19/2010  
919     4/1/2005  
920    6/29/2007  
Name: first_funding_at, Length: 229, dtype: object  
------------------------------------------------  

last_funding_at  

4        4/1/2012  
5       7/18/2006  
11       5/3/2011  
16      10/5/2009  
19     10/30/2009  
          ...      
911     1/30/2012  
913     1/15/2008  
915     1/19/2010  
919     3/23/2007  
920     6/29/2007  
Name: last_funding_at, Length: 229, dtype: object  
------------------------------------------------  

state_code.1  

4      CA  
5      CA  
11     CA  
16     CA  
19     CA  
       ..  
911    CA  
913    TX  
915    WI  
919    MA  
920    CA  
Name: state_code.1, Length: 229, dtype: object  
------------------------------------------------  

category_code  

4          games_video  
5      network_hosting  
11                 web  
16            security  
19          enterprise  
            ...         
911            biotech  
913                web  
915        advertising  
919           security  
920            biotech  
Name: category_code, Length: 229, dtype: object  
------------------------------------------------  

status  

4      closed  
5      closed  
11     closed  
16     closed  
19     closed  
        ...    
911    closed  
913    closed  
915    closed  
919    closed  
920    closed  
Name: status, Length: 229, dtype: object  
------------------------------------------------
#Encoding categorical data values  
from sklearn.preprocessing import LabelEncoder  
le = LabelEncoder()  

for value in objects_lst:  
    df[value] = le.fit_transform(df[value])
#After encoding or converting categorical col values into numbers  
for value in objects_lst:  
    print(value)  
    print()  
    print(df[value])  
    print("------------------------------------------------")  
    print()
state_code  

4       1  
5       1  
11      1  
16      1  
19      1  
       ..  
911     1  
913    22  
915    26  
919     9  
920     1  
Name: state_code, Length: 229, dtype: int32  
------------------------------------------------  

zip_code  

4      118  
5      107  
11     104  
16     103  
19     124  
      ...   
911    112  
913     68  
915     53  
919     18  
920    115  
Name: zip_code, Length: 229, dtype: int32  
------------------------------------------------  

city  

4      77  
5      50  
11     46  
16     41  
19     59  
       ..  
911    87  
913    33  
915    47  
919    11  
920    88  
Name: city, Length: 229, dtype: int32  
------------------------------------------------  

name  

4       90  
5      114  
11      27  
16     159  
19      16  
      ...   
911    104  
913    168  
915    194  
919    163  
920    144  
Name: name, Length: 229, dtype: int32  
------------------------------------------------  

founded_at  

4      73  
5       7  
11     11  
16      8  
19     12  
       ..  
911     9  
913    22  
915    35  
919     3  
920     4  
Name: founded_at, Length: 229, dtype: int32  
------------------------------------------------  

closed_at  

4       18  
5       52  
11      40  
16     130  
19     127  
      ...   
911     91  
913     33  
915     41  
919     95  
920     94  
Name: closed_at, Length: 229, dtype: int32  
------------------------------------------------  

first_funding_at  

4      165  
5      154  
11      70  
16     173  
19     155  
      ...   
911    138  
913     12  
915     13  
919     98  
920    143  
Name: first_funding_at, Length: 229, dtype: int32  
------------------------------------------------  

last_funding_at  

4      105  
5      159  
11     139  
16      34  
19      32  
      ...   
911     17  
913     10  
915     11  
919     91  
920    147  
Name: last_funding_at, Length: 229, dtype: int32  
------------------------------------------------  

state_code.1  

4       1  
5       1  
11      1  
16      1  
19      1  
       ..  
911     1  
913    22  
915    26  
919     9  
920     1  
Name: state_code.1, Length: 229, dtype: int32  
------------------------------------------------  

category_code  

4      10  
5      14  
11     26  
16     21  
19      7  
       ..  
911     3  
913    26  
915     0  
919    21  
920     3  
Name: category_code, Length: 229, dtype: int32  
------------------------------------------------  

status  

4      1  
5      1  
11     1  
16     1  
19     1  
      ..  
911    1  
913    1  
915    1  
919    1  
920    1  
Name: status, Length: 229, dtype: int32  
------------------------------------------------

1 ~ closed, 0 ~ acquired

Skewness

Skewness is a measure of the asymmetry of a distribution. A distribution is asymmetrical when its left and right side are not mirror images. A distribution can have right (or positive), left (or negative), or zero skewness

Why do we calculate Skewness ?

Skewness gives the direction of the outliers if it is right-skewed, most of the outliers are present on the right side of the distribution while if it is left-skewed, most of the outliers will present on the left side of the distribution

Below is the function to calculate skewness.

def right_nor_left(df, int64_lst):  

    temp_skewness = ['column', 'skewness_value', 'skewness (+ve or -ve)']  
    temp_skewness_values  = []  

    temp_total = ["positive (+ve) skewed", "normal distrbution" , "negative (-ve) skewed"]  
    positive = 0  
    negative = 0  
    normal = 0  

    for value in int64_lst:  

        rs = round(df[value].skew(),4)  

        if rs > 0:  
            temp_skewness_values.append([value,rs , "positive (+ve) skewed"])     
            positive = positive + 1  

        elif rs == 0:  
            temp_skewness_values.append([value,rs,"normal distrbution"])  
            normal = normal + 1  

        elif rs < 0:  
            temp_skewness_values.append([value,rs, "negative (-ve) skewed"])  
            negative = negative + 1  

    skewness_df =  pd.DataFrame(temp_skewness_values, columns=temp_skewness)   
    skewness_total_df =  pd.DataFrame([[positive, normal, negative]], columns=temp_total)   

    return skewness_df, skewness_total_df
float64_cols = ['float64']  
float64_lst_col = list(df.select_dtypes(include=float64_cols).columns)  

skew_df,skew_total_df = right_nor_left(df, float64_lst_col)
skew_df

png

skew_total_df

png

int64_cols = ['int64','int32']  
int64_lst_col = list(df.select_dtypes(include=int64_cols).columns)  

skew_df,skew_total_df = right_nor_left(df, int64_lst_col)
skew_df

png

skew_total_df

png

We notice with the above results that we have following details:

  1. 37 columns are positive skewed

  2. 6 columns are negative skewed

  3. 1 columns are normal skewed

Step 3 Insights: -

With the statistical analysis we have found that the data have a lot of skewness in them all the columns are positively skewed with mostly zero variance.

Statistical analysis is little difficult to understand at one glance so to make it more understandable we will perform visulatization on the data which will help us to understand the process easily.

Why we are calculating all these metrics?

Mean / Median /Mode/ Variance /Standard Deviation are all very basic but very important concept of statistics used in data science. Almost all the machine learning algorithm uses these concepts in data preprocessing steps. These concepts are part of descriptive statistics where we basically used to describe and understand the data for features in Machine learning

What does it take to build a successful company?

Launching a successful tech startup is a complex endeavor that depends upon many and many factors. Some are internal and can be controlled. Think of the quality of the product, the innovation, or the relentless customer focus. Some others are external, thus cannot be controlled. Think about timing, the success of a complementary technology that allows yours to thrive and so on. In this article, I want to focus on five factors that Bill Gross, founder of Idealab and GoTo (afterward named Overture) identified. It is important to remark this analysis is not “scientific” in the strict sense as Bill Gross applied subjective parameters to each factor in consideration. However, overall I think it is a good starting point to understand what makes a tech startup successful. More precisely Bill Gross identified five factors that are critical for any startup success:

  • Ideas

  • Team

  • Business model

  • Funding

  • Timing

Step 4: Data Exploration

Goal/Purpose:

Graphs we are going to develop in this step

  1. Histogram of all columns to check the distrubution of the columns

  2. Distplot or distribution plot of all columns to check the variation in the data distribution

  3. Heatmap to calculate correlation within feature variables

  4. Boxplot to find out outlier in the feature columns

1. Histogram

A histogram is a bar graph-like representation of data that buckets a range of classes into columns along the horizontal x-axis.The vertical y-axis represents the number count or percentage of occurrences in the data for each column

# Distribution in attributes  
%matplotlib inline  
for i in df.columns:  
    df[i].hist(bins=50, figsize=(10,10))  
    plt.title(i+"\n",fontweight ="bold")  
    plt.show()  
    print("   =======================================================================================================\n")

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

png

=======================================================================================================

Histogram Insight: -

Histogram helps in identifying the following:

  • View the shape of your data set’s distribution to look for outliers or other significant data points.

  • Determine whether something significant has boccurred from one time period to another.

Why Histogram?

It is used to illustrate the major features of the distribution of the data in a convenient form. It is also useful when dealing with large data sets (greater than 100 observations). It can help detect any unusual observations (outliers) or any gaps in the data.

From the above graphical representation we can identify that the highest bar represents the outliers which is above the maximum range.

We can also identify that the values are moving on the right side, which determines positive and the centered values determines normal skewness.

2. Distplot

A Distplot or distribution plot, depicts the variation in the data distribution. Seaborn Distplot represents the overall distribution of continuous data variables. The Seaborn module along with the Matplotlib module is used to depict the distplot with different variations in it

num = [f for f in df.columns if df.dtypes[f] != 'object']  
nd = pd.melt(df, value_vars = num)  
n1 = sns.FacetGrid (nd, col='variable', col_wrap=3, sharex=False, sharey = False)  
n1 = n1.map(sns.distplot, 'value')  
n1
<seaborn.axisgrid.FacetGrid at 0x1c03ad78af0>

png

Distplot Insights: -

Above is the distrution bar graphs to confirm about the statistics of the data about the skewness, the above results are:

  1. 37 columns are positive skewed, 6 columns are negative skewed and 1 columns are normal skewed

  2. 1 column is added here i.e status which is our target variable ~ which is also -ve skewed. In that case we’ll need to log transform this variable so that it becomes normally distributed. A normally distributed (or close to normal) target variable helps in better modeling the relationship between target and independent variables

Why Distplot?

Skewness is demonstrated on a bell curve when data points are not distributed symmetrically to the left and right sides of the median on a bell curve. If the bell curve is shifted to the left or the right, it is said to be skewed.

We can observe that the bell curve is shifted to left we indicates positive skewness.As all the column are positively skewed we don’t need to do scaling.

Let’s proceed and check the distribution of the target variable.

#+ve skewed   
df['status'].skew()
-4.77319489693332

The target variable is negatively skewed.A normally distributed (or close to normal) target variable helps in better modeling the relationship between target and independent variables.

3. Heatmap

A heatmap (or heat map) is a graphical representation of data where values are depicted by color.Heatmaps make it easy to visualize complex data and understand it at a glance

Correlation — A positive correlation is a relationship between two variables in which both variables move in the same direction. Therefore, when one variable increases as the other variable increases, or one variable decreases while the other decreases.

Correlation can have a value:

  • 1 is a perfect positive correlation

  • 0 is no correlation (the values don’t seem linked at all)

  • -1 is a perfect negative correlation

#correlation plot  
plt.figure(figsize=(35,35))  
ax = sns.heatmap(data = df.corr().abs(),cmap='YlGnBu',annot=True)  

bottom, top = ax.get_ylim()  
ax.set_ylim(bottom + 0.5,top - 0.5)
(44.5, -0.5)

png

cols = df.corr().nlargest(10,'status')['status'].index  
cm = np.corrcoef(df[cols].values.T)   
sns.set(font_scale=1.25)  
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, cmap='YlGnBu', fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)  
plt.show()

png

Notice the last column from right side of this map. We can see the correlation of all variables against status. As you can see, some variables seem to be strongly correlated with the target variable. Here, a numeric correlation score will help us understand the graph better.

print (corr['status'].sort_values(ascending=False)[:15], '\n') #top 15 values  
print ('-------------------------------------')  
print (corr['status'].sort_values(ascending=False)[-5:]) #last 5 values  
print ('-------------------------------------')
status                      1.000000  
labels                      1.000000  
relationships               0.244425  
is_advertising              0.135995  
is_biotech                  0.107517  
name                        0.105387  
age_last_milestone_year     0.103604  
milestones                  0.096847  
is_top500                   0.093263  
zip_code                    0.090825  
category_code               0.083656  
age_first_milestone_year    0.080406  
is_otherstate               0.077489  
latitude                    0.074696  
state_code.1                0.072636  
Name: status, dtype: float64   

-------------------------------------  
funding_rounds            0.010542  
has_VC                    0.010439  
has_angel                 0.006793  
funding_total_usd         0.005819  
age_first_funding_year    0.003604  
Name: status, dtype: float64  
-------------------------------------

Here we see that the labels feature is 100% correlated with the target variable.

corr

png

Heatmap insights: -

As we know, it is recommended to avoid correlated features in your dataset. Indeed, a group of highly correlated features will not bring additional information (or just very few), but will increase the complexity of the algorithm, hence increasing the risk of errors.

Why Heatmap?

Heatmaps are used to show relationships between two variables, one plotted on each axis. By observing how cell colors change across each axis, you can observe if there are any patterns in value for one or both variables.

# Create correlation matrix  
corr_matrix = df.corr().abs()  

# Select upper triangle of correlation matrix  
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool_))  

# Find index of feature columns with correlation greater than 0.8  
to_drop = [column for column in upper.columns if any(upper[column] > 0.2)]
to_drop
['latitude',  
 'longitude',  
 'zip_code',  
 'city',  
 'first_funding_at',  
 'last_funding_at',  
 'age_first_funding_year',  
 'age_last_funding_year',  
 'age_first_milestone_year',  
 'age_last_milestone_year',  
 'relationships',  
 'funding_rounds',  
 'funding_total_usd',  
 'milestones',  
 'state_code.1',  
 'is_CA',  
 'is_NY',  
 'is_MA',  
 'is_TX',  
 'is_otherstate',  
 'is_software',  
 'is_web',  
 'is_enterprise',  
 'is_advertising',  
 'is_ecommerce',  
 'is_biotech',  
 'is_othercategory',  
 'has_VC',  
 'has_angel',  
 'has_roundA',  
 'has_roundB',  
 'has_roundC',  
 'has_roundD',  
 'avg_participants',  
 'is_top500',  
 'status']
#Here we are droping those columns  
to_drop.remove('status')  
df.drop(columns = to_drop, axis=1, inplace=True)
df.head()

png

df.info()
<class 'pandas.core.frame.DataFrame'>  
Int64Index: 229 entries, 4 to 920  
Data columns (total 9 columns):  
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   state_code     229 non-null    int32  
 1   name           229 non-null    int32  
 2   labels         229 non-null    int64  
 3   founded_at     229 non-null    int32  
 4   closed_at      229 non-null    int32  
 5   category_code  229 non-null    int32  
 6   is_mobile      229 non-null    int64  
 7   is_gamesvideo  229 non-null    int64  
 8   status         229 non-null    int32  
dtypes: int32(6), int64(3)  
memory usage: 12.5 KB

Here, we are checking which columns we have after “to-drop”.

4. Boxplot

211626365402575-b88c4d0fdacd5abb4c3dc2de3bc004bb.png

A boxplot is a standardized way of displaying the distribution of data based on a five number summary (“minimum”, first quartile [Q1], median, third quartile [Q3] and “maximum”).

Basically, to find the outlier in a dataset/column.

features = df.columns.tolist()  
features.remove('status')
for value in features:  
    sns.catplot(data=df, x=value,  kind="box")

png

png

png

png

png

png

png

png

#for target variable  
sns.catplot(data=df, x='status', kind='box')
<seaborn.axisgrid.FacetGrid at 0x1ee5e64b160>

png

The dark points are known as Outliers. Outliers are those data points that are significantly different from the rest of the dataset. They are often abnormal observations that skew the data distribution, and arise due to inconsistent data entry, or erroneous observations.

Boxplot Insights: -

  • Sometimes outliers may be an error in the data and should be removed. In this case these points are correct readings yet they are different from the other points that they appear to be incorrect.

  • The best way to decide wether to remove them or not is to train models with and without these data points and compare their validation accuracy.

  • So we will keep it unchanged as it won’t affect our model.

Here, we can see that most of the variables possess outlier values. It would take us days if we start treating these outlier values one by one. Hence, for now we’ll leave them as is and let our algorithm deal with them. As we know, tree-based algorithms are usually robust to outliers.

Why Boxplot?

Box plots are used to show distributions of numeric data values, especially when you want to compare them between multiple groups. They are built to provide high-level information at a glance, offering general information about a group of data’s symmetry, skew, variance, and outliers.

In the next step we will divide our cleaned data into training data and testing data.

Step 2: Data Preparation

Goal:-

Tasks we are going to in this step:

  1. Now we will spearate the target variable and feature columns in two different dataframe and will check the shape of the dataset for validation purpose.

  2. Split dataset into train and test dataset.

  3. Scaling on train dataset.

1. Now we spearate the target variable and feature columns in two different dataframe and will check the shape of the dataset for validation purpose.

# Separate target and feature column in X and y variable  

target = 'status'  

# X will be the features  
X = df.drop(target,axis=1)   
#y will be the target variable  
y = df[target]

y have target variable and X have all other variable.

Here in Startup Success Rate Prediction, status is the target variable.

X.info()
<class 'pandas.core.frame.DataFrame'>  
Int64Index: 229 entries, 4 to 920  
Data columns (total 8 columns):  
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   state_code     229 non-null    int32  
 1   name           229 non-null    int32  
 2   labels         229 non-null    int64  
 3   founded_at     229 non-null    int32  
 4   closed_at      229 non-null    int32  
 5   category_code  229 non-null    int32  
 6   is_mobile      229 non-null    int64  
 7   is_gamesvideo  229 non-null    int64  
dtypes: int32(5), int64(3)  
memory usage: 11.6 KB
y
4      1  
5      1  
11     1  
16     1  
19     1  
      ..  
911    1  
913    1  
915    1  
919    1  
920    1  
Name: status, Length: 229, dtype: int32
# Check the shape of X and y variable  
X.shape, y.shape
((229, 8), (229,))
# Reshape the y variable   
y = y.values.reshape(-1,1)
# Again check the shape of X and y variable  
X.shape, y.shape
((229, 8), (229, 1))

2. Spliting the dataset in training and testing data.

Here we are spliting our dataset into 80/20 percentage where 80% dataset goes into the training part and 20% goes into testing part.

# Split the X and y into X_train, X_test, y_train, y_test variables with 80-20% split.  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Check shape of the splitted variables  
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((183, 8), (46, 8), (183, 1), (46, 1))

Insights: -

Train test split technique is used to estimate the performance of machine learning algorithms which are used to make predictions on data not used to train the model.It is a fast and easy procedure to perform, the results of which allow you to compare the performance of machine learning algorithms for your predictive modeling problem. Although simple to use and interpret, there are times when the procedure should not be used, such as when you have a small dataset and situations where additional configuration is required, such as when it is used for classification and the dataset is not balanced.

In the next step we will train our model on the basis of our training and testing data.

Step 3: Model Training

Goal:

In this step we are going to train our dataset on different classification algorithms. As we know that our target variable is in discrete format so we have to apply classification algorithm. Target variable is a category like filtering.In our dataset we have the outcome variable or Dependent variable i.e Y having only two set of values, either M (Malign) or B(Benign). So we will use Classification algorithm**

Algorithms we are going to use in this step

  1. Logistic Regression

  2. KNearest Neighbor

  3. Random Forest Classification

K-fold cross validation is a procedure used to estimate the skill of the model on new data. There are common tactics that you can use to select the value of k for your dataset. There are commonly used variations on cross-validation, such as stratified and repeated, that are available in scikit-learn

# Define kfold with 10 split  
cv = KFold(n_splits=10, shuffle=True, random_state=42)

The goal of cross-validation is to test the model’s ability to predict new data that was not used in estimating it, in order to flag problems like overfitting or selection bias and to give an insight on how the model will generalize to an independent dataset (i.e., an unknown dataset, for instance from a real problem).

1. Logistic Regression

Logistic regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables.

Logistic regression predicts the output of a categorical dependent variable. Therefore the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie between 0 and 1.

Train set cross-validation

#Using Logistic Regression Algorithm to the Training Set  
from sklearn.linear_model import LogisticRegression  

log_R = LogisticRegression() #Object Creation  

log_R.fit(X_train, y_train)
LogisticRegression()
#Accuracy check of trainig data  

#Get R2 score  
log_R.score(X_train, y_train)
0.9781420765027322
#Accuracy of test data  
log_R.score(X_test, y_test)
0.9565217391304348
# Getting kfold values  
lg_scores = -1 * cross_val_score(log_R,   
                                 X_train,   
                                 y_train,   
                                 cv=cv,   
                                 scoring='neg_root_mean_squared_error')  
lg_scores
array([0.22941573, 0.        , 0.22941573, 0.23570226, 0.        ,  
       0.        , 0.23570226, 0.        , 0.33333333, 0.23570226])
# Mean of the train kfold scores  
lg_score_train = np.mean(lg_scores)  
lg_score_train
0.14992715822610042

Prediction

Now we will perform prediction on the dataset using Logistic Regression.

# Predict the values on X_test_scaled dataset   
y_predicted = log_R.predict(X_test)

Various parameters are calculated for analysing the predictions.

  1. Confusion Matrix 2)Classification Report 3)Accuracy Score 4)Precision Score 5)Recall Score 6)F1 Score

Confusion Matrix

A confusion matrix presents a table layout of the different outcomes of the prediction and results of a classification problem and helps visualize its outcomes. It plots a table of all the predicted and actual values of a classifier.

confusion-matrix.jpeg

This diagram helps in understanding the concept of confusion matrix.

# Constructing the confusion matrix.  
from sklearn.metrics import confusion_matrix
#confusion matrix btw y_test and y_predicted  
cm = confusion_matrix(y_test,y_predicted)
#We are creating Confusion Matrix on heatmap to have better understanding   
# sns.heatmap(cm,cmap = 'Red') ~ to check for available colors  
sns.set(rc = {'figure.figsize':(5,5)})  
sns.heatmap(cm,cmap = 'icefire_r', annot = True, cbar=False, linecolor='Black', linewidth = 2)  

plt.title("Confusion matrix")  
plt.xticks(np.arange(2)+.5,['Non-Maligant', 'Maligant'])  
plt.yticks(np.arange(2)+.5,['Non-Maligant', 'Maligant'])  
plt.xlabel('Predicted CLass')  
plt.ylabel('True Class')
Text(29.75, 0.5, 'True Class')

png

sns.heatmap(cm/np.sum(cm), annot=True,   
            fmt='.2%', cmap='Blues', cbar = False)
<AxesSubplot:>

png

Evaluating all kinds of evaluating parameters.

Classification Report :

A classification report is a performance evaluation metric in machine learning. It is used to show the precision, recall, F1 Score, and support of your trained classification model.

F1_score :

The F1 score is a machine learning metric that can be used in classification models.

Precision_score :

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0.

Recall_score :

Recall score is used to measure the model performance in terms of measuring the count of true positives in a correct manner out of all the actual positive values. Precision-Recall score is a useful measure of success of prediction when the classes are very imbalanced.

# Evaluating the classifier  
# printing every score of the classifier  
# scoring in anything  
from sklearn.metrics import classification_report   
from sklearn.metrics import f1_score, accuracy_score, precision_score,recall_score  
from sklearn.metrics import confusion_matrix  


print("The model used is Logistic Regression")  

l_acc = accuracy_score(y_test, y_predicted)*100  
print("\nThe accuracy is: {}".format(l_acc))  

prec = precision_score(y_test, y_predicted)  
print("The precision is: {}".format(prec))  

rec = recall_score(y_test, y_predicted)  
print("The recall is: {}".format(rec))  

f1 = f1_score(y_test, y_predicted)  
print("The F1-Score is: {}".format(f1))  

c1 = classification_report(y_test, y_predicted)  
print("Classification Report is:")  
print()  
print(c1)
The model used is Logistic Regression  

The accuracy is: 95.65217391304348  
The precision is: 0.9565217391304348  
The recall is: 1.0  
The F1-Score is: 0.9777777777777777  
Classification Report is:  

              precision    recall  f1-score   support  

           0       0.00      0.00      0.00         2  
           1       0.96      1.00      0.98        44  

    accuracy                           0.96        46  
   macro avg       0.48      0.50      0.49        46  
weighted avg       0.91      0.96      0.94        46

2. K Nearest Neighbour

K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on Supervised Learning technique. K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categories. K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm

#Using KNeighborsClassifier Method of neighbors class to use Nearest Neighbor algorithm  
from sklearn.neighbors import KNeighborsClassifier  
classifier = KNeighborsClassifier()  
classifier.fit(X_train, y_train)
KNeighborsClassifier()
#Accuracy check of trainig data  
#Get R2 score  
classifier.score(X_train, y_train)
0.9617486338797814
#Accuracy of test data  
classifier.score(X_test, y_test)
0.9565217391304348
#Get kfold values  
Nn_scores = -1 * cross_val_score(classifier,   
                                    X_train,   
                                    y_train,   
                                    cv=cv,   
                                    scoring='neg_root_mean_squared_error')  
Nn_scores
array([0.22941573, 0.        , 0.22941573, 0.23570226, 0.        ,  
       0.        , 0.23570226, 0.        , 0.33333333, 0.23570226])
# Mean of the train kfold scores  
Nn_score_train = np.mean(Nn_scores)  
Nn_score_train
0.14992715822610042

Prediction

Now we will perform prediction on the dataset using K Nearest Neighbour.

# Predict the values on X_test_scaled dataset   
y_predicted = classifier.predict(X_test)
# Constructing the confusion matrix.  
from sklearn.metrics import confusion_matrix
#Confusion matrix btw y_test and y_predicted  
cm = confusion_matrix(y_test,y_predicted)
#We are drawing cm on heatmap to have better understanding   
# sns.heatmap(cm,cmap = 'Red') ~ to check for available colors  
sns.heatmap(cm,cmap = 'icefire_r', annot = True, fmt= 'd', cbar=False, linecolor='Black', linewidth = 2)  
plt.title("Confusion matrix")  
plt.xticks(np.arange(2)+.5,['Non-Maligant', 'Maligant'])  
plt.yticks(np.arange(2)+.5,['Non=Maligant', 'Maligant'])  
plt.xlabel('Predicted CLass')  
plt.ylabel('True Class')
Text(29.75, 0.5, 'True Class')

png

sns.heatmap(cm/np.sum(cm), annot=True,   
            fmt='.2%', cmap='Blues', cbar = False)
<AxesSubplot:>

png

Evaluating all kinds of evaluating parameters.

# Evaluating the classifier  
# printing every score of the classifier  
# scoring in anything  
from sklearn.metrics import classification_report   
from sklearn.metrics import f1_score, accuracy_score, precision_score,recall_score  
from sklearn.metrics import confusion_matrix  


print("The model used is KNeighbors Classifier")  

k_acc = accuracy_score(y_test, y_predicted)*100  
print("\nThe accuracy is: {}".format(k_acc))  

prec = precision_score(y_test, y_predicted)  
print("The precision is: {}".format(prec))  

rec = recall_score(y_test, y_predicted)  
print("The recall is: {}".format(rec))  

f1 = f1_score(y_test, y_predicted)  
print("The F1-Score is: {}".format(f1))  

c1 = classification_report(y_test, y_predicted)  
print("Classification Report is:")  
print()  
print(c1)
The model used is KNeighbors Classifier  

The accuracy is: 95.65217391304348  
The precision is: 0.9565217391304348  
The recall is: 1.0  
The F1-Score is: 0.9777777777777777  
Classification Report is:  

              precision    recall  f1-score   support  

           0       0.00      0.00      0.00         2  
           1       0.96      1.00      0.98        44  

    accuracy                           0.96        46  
   macro avg       0.48      0.50      0.49        46  
weighted avg       0.91      0.96      0.94        46

3. Random Forest Classifier

Random Forest is a powerful and versatile supervised machine learning algorithm that grows and combines multiple decision trees to create a “forest.” It can be used for both classification and regression problems in R and Python.

Random Forest and Decision Tree Algorithm are considered best for the data that has outliers.

#Using RandomForestClassifier method of ensemble class to use Random Forest Classification algorithm  

from sklearn.ensemble import RandomForestClassifier  
#clas = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)  
clas = RandomForestClassifier()  
clas.fit(X_train, y_train)
RandomForestClassifier()
#Accuracy check of trainig data  
#Get R2 score  
clas.score(X_train, y_train)
1.0
#Accuracy of test data  
clas.score(X_test, y_test)
1.0
# Get kfold values  
Dta_scores = -1 * cross_val_score(clas,   
                                    X_train,   
                                    y_train,   
                                    cv=cv,   
                                    scoring='neg_root_mean_squared_error')  
Dta_scores
array([0.        , 0.        , 0.        , 0.        , 0.        ,  
       0.        , 0.23570226, 0.        , 0.        , 0.        ])
# Mean of the train kfold scores  
Dta_score_train = np.mean(Dta_scores)  
Dta_score_train
0.023570226039551584

Prediction

Now we will perform prediction on the dataset using Random Forest Classifier.

# predict the values on X_test_scaled dataset   
y_predicted = clas.predict(X_test)
# Constructing the confusion matrix.  
from sklearn.metrics import confusion_matrix
#confusion matrix btw y_test and y_predicted  
cm = confusion_matrix(y_test,y_predicted)
#We are drawing cm on heatmap to have better understanding   
# sns.heatmap(cm,cmap = 'Red') ~ to check for available colors  
sns.heatmap(cm,cmap = 'icefire_r', annot = True, fmt= 'd', cbar=False, linecolor='Black', linewidth = 2)  
plt.title("Confusion matrix")  
plt.xticks(np.arange(2)+.5,['Non-Maligant', 'Maligant'])  
plt.yticks(np.arange(2)+.5,['Non=Maligant', 'Maligant'])  
plt.xlabel('Predicted CLass')  
plt.ylabel('True Class')
Text(29.75, 0.5, 'True Class')

png

sns.heatmap(cm/np.sum(cm), annot=True,   
            fmt='.2%', cmap='Blues', cbar = False)
<AxesSubplot:>

png

Evaluating all kinds of evaluating parameters.

# Evaluating the classifier  
# printing every score of the classifier  
# scoring in anything  
from sklearn.metrics import classification_report   
from sklearn.metrics import f1_score, accuracy_score, precision_score,recall_score  
from sklearn.metrics import confusion_matrix  


print("The model used is Random Forest Classifier")  

r_acc = accuracy_score(y_test, y_predicted)*100  
print("\nThe accuracy is {}".format(r_acc))  

prec = precision_score(y_test, y_predicted)  
print("The precision is {}".format(prec))  

rec = recall_score(y_test, y_predicted)  
print("The recall is {}".format(rec))  

f1 = f1_score(y_test, y_predicted)  
print("The F1-Score is {}".format(f1))  

c1 = classification_report(y_test, y_predicted)  
print("Classification Report is:")  
print()  
print(c1)
The model used is Random Forest Classifier  

The accuracy is 100.0  
The precision is 1.0  
The recall is 1.0  
The F1-Score is 1.0  
Classification Report is:  

              precision    recall  f1-score   support  

           0       1.00      1.00      1.00         2  
           1       1.00      1.00      1.00        44  

    accuracy                           1.00        46  
   macro avg       1.00      1.00      1.00        46  
weighted avg       1.00      1.00      1.00        46

Insight: -

cal_metric=pd.DataFrame([l_acc,k_acc,r_acc],columns=["Score in percentage"])  
cal_metric.index=['Logistic Regression',  
                  'K-nearest Neighbours',  
                  'Random Forest']  
cal_metric

png

  • As you can see with our Random Forest (1.0000 or 100%)

  • So we gonna save our model with Random Forest Algorithm

Step 4: Save Model

Goal:- In this step we are going to save our model in pickel format file.

import pickle  
pickle.dump(clas , open('Startup_Success_Rate_Pred_lo.pkl', 'wb'))  
pickle.dump(clas , open('Startup_Success_Rate_Pred_kn.pkl', 'wb'))  
pickle.dump(clas , open('Startup_Success_Rate_Pred_ra.pkl', 'wb'))
import pickle  

def model_prediction(features):  

    pickled_model = pickle.load(open('Startup_Success_Rate_Pred_ra.pkl', 'rb'))  
    s = str(pickled_model.predict(features)[0])  
    if s=='1':  
        s='closed'  
    else:  
        s='acquired'  

    return str(f'The startup will {s}')

We can test our model by giving our own parameters or features to predict.

state_code = 1  
name = 47  
labels = 0  
founded_at = 6  
closed_at = 18  
category_code = 13  
is_mobile = 1  
is_gamesvideo = 0
model_prediction([[state_code, name, labels, founded_at, closed_at, category_code, is_mobile,is_gamesvideo]])
'The startup will closed'

1 = closed, 0 = acquired

Conclusion

After observing the problem statement we have build an efficient model to solve the problem. The above model helps in predicting the success rate to startups. The accuracy for the prediction is 100%.

Checkout whole project codehere(github repo).

🚀 Unlock Your Dream Job with HiDevs Community!

🔍 Seeking the perfect job?HiDevs Community is your gateway to career success in the tech industry. Explore free expert courses, job-seeking support, and career transformation tips.

💼 We offer an upskill program in Gen AI, Data Science, Machine Learning, and assist startups in adopting Gen AI at minimal development costs.

🆓 Best of all, everything we offer is completely free! We are dedicated to helping society.

Book free of cost 1:1 mentorship on any topic of your choice —topmate

✨ We dedicate over 30 minutes to each applicant’s resume, LinkedIn profile, mock interview, and upskill program. If you’d like our guidance, check out our services here

💡 Join us now, and turbocharge your career!

Deepak Chawla LinkedIn
Vijendra Singh LinkedIn
Yajendra Prajapati LinkedIn
YouTube Channel
Instagram Page
HiDevs LinkedIn
Project Youtube Link